QMLE for periodic absolute value GARCH models

Author:

Slimani Walid1,Lescheb Ines2,Cherfaoui Mouloud3

Affiliation:

1. Laboratory of Applied Mathematics , Mohamed Khider University , Box 145 , Biskra 07000 , Algeria

2. Department of Mathematics , University of Constantine 1 , 25000 Constantine , Algeria

3. Research Unit LaMOS (Modeling and Optimization of Systems) , University of Bejaia , Bejaia , Algeria

Abstract

Abstract Periodic generalized autoregressive conditionally heteroscedastic (PGARCH) models were introduced by Bollerslev and Ghysels [T. Bollerslev and E. Ghysels, Periodic autoregressive conditional heteroscedasticity, J. Bus. Econom. Statist. 14 1996, 2, 139–151]; these models have gained considerable interest and continued to attract the attention of researchers. This paper is devoted to extensions of the standard absolute value GARCH (AVGARCH) model to the periodically time-varying coefficients (PAVGARCH) one. In this class of models, the parameters are allowed to switch between different regimes. Moreover, these models allow to integrate asymmetric effects in the volatility, Firstly, we give necessary and sufficient conditions ensuring the existence of stationary solutions (in the periodic sense). Secondary, a quasi-maximum likelihood (QML) estimation approach for estimating the PAVGARCH model is developed. The strong consistency and the asymptotic normality of the estimator are studied given mild regularity conditions, requiring strict stationarity and the finiteness of moments of some order for the errors term. Next, we present a set of numerical experiments illustrating the practical relevance of our theoretical results. Finally, we apply our model to two foreign exchange rates: of Algerian Dinar to the European currency Euro (Euro/Dinar) and the American currency Dollar (Dollar/Dinar). This empirical work shows that our approach also outperforms and fits the data well.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3