Affiliation:
1. École Supérieure des Sciences et Techniques de l’Ingénieur , Université Amadou Mahtar M’bow de Diamniadio (Sénégal) , Diamniadio , Senegal
Abstract
Abstract
We study an asymptotic problem of a semilinear partial differential equation (PDE) with Neumann boundary condition, periodic coefficients and highly oscillating drift and nonlinear terms. Our analysis focuses on the double limiting behavior of the PDE-solution perturbed by ε (viscosity parameter) and δ (scaling coefficient) both tending to zero. To do so, we state basic properties of the large deviations principle (LDP) and we express the logarithmic asymptotic of the PDE-solution. Particularly, we provide it for the case when ε converges more quickly than δ.
Reference10 articles.
1. P. H. Baxendale and D. W. Stroock,
Large deviations and stochastic flows of diffeomorphisms,
Probab. Theory Related Fields 80 (1988), no. 2, 169–215.
2. A. Coulibaly and M. A. Allaya,
Double Perturbation of Diffusion processes with Reflecting boundary condition,
J. Appl. Probab. Stat. 14 (2019), no. 3, 23–39.
3. A. Coulibaly, A. Diédhiou and C. Manga,
Limit of a parabobolic PDE solution depending on two parameters,
Int. J. Appl. Math. 29 (2016), no. 3, 349–364.
4. A. Dembo and O. Zeitouni,
Large Deviations Techniques and Applications,
Jones and Bartlett, Boston, 1993.
5. H. Doss and P. Priouret,
Petites perturbations de systèmes dynamiques avec réflexion,
Seminar on Probability. XVII,
Lecture Notes in Math. 986,
Springer, Berlin (1983), 353–370.