Stability and prevalence of McKean–Vlasov stochastic differential equations with non-Lipschitz coefficients

Author:

Mezerdi Mohamed Amine1,Khelfallah Nabil1

Affiliation:

1. Laboratory of Applied Mathematics , University Mohamed Khider of Biskra , PO Box 145 , Biskra (07000) , Algeria

Abstract

Abstract We consider various approximation properties for systems driven by a McKean–Vlasov stochastic differential equations (MVSDEs) with continuous coefficients, for which pathwise uniqueness holds. We prove that the solution of such equations is stable with respect to small perturbation of initial conditions, parameters and driving processes. Moreover, the unique strong solutions may be constructed by an effective approximation procedure. Finally, we show that the set of bounded uniformly continuous coefficients for which the corresponding MVSDE have a unique strong solution is a set of second category in the sense of Baire.

Publisher

Walter de Gruyter GmbH

Subject

Statistics and Probability,Analysis

Reference20 articles.

1. J. J. Alibert and K. Bahlali, Genericity in deterministic and stochastic differential equations, Séminaire de Probabilités, XXXV, Lecture Notes in Math. 1755, Springer, Berlin (2001), 220–240.

2. K. Bahlali, B. Mezerdi and Y. Ouknine, Some generic properties of stochastic differential equations, Stochastics Stochastics Rep. 57 (1996), no. 3–4, 235–245.

3. K. Bahlali, B. Mezerdi and Y. Ouknine, Pathwise uniqueness and approximation of solutions of stochastic differential equations, Séminaire de Probabilités, XXXV, Lecture Notes in Math. 1686, Springer, Berlin (1998), 166–187.

4. K. Bahlali, M. A. Mezerdi and B. Mezerdi, Stability of McKean–Vlasov stochastic differential equations and applications, Stoch. Dyn. 20 (2020), no. 1, Article ID 2050007.

5. M. Bossy, O. Faugeras and D. Talay, Clarification and complement to “Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons”, J. Math. Neurosci. 5 (2015), Paper No. 19.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3