1. J. J. Alibert and K. Bahlali,
Genericity in deterministic and stochastic differential equations,
Séminaire de Probabilités, XXXV,
Lecture Notes in Math. 1755,
Springer, Berlin (2001), 220–240.
2. K. Bahlali, B. Mezerdi and Y. Ouknine,
Some generic properties of stochastic differential equations,
Stochastics Stochastics Rep. 57 (1996), no. 3–4, 235–245.
3. K. Bahlali, B. Mezerdi and Y. Ouknine,
Pathwise uniqueness and approximation of solutions of stochastic differential equations,
Séminaire de Probabilités, XXXV,
Lecture Notes in Math. 1686,
Springer, Berlin (1998), 166–187.
4. K. Bahlali, M. A. Mezerdi and B. Mezerdi,
Stability of McKean–Vlasov stochastic differential equations and applications,
Stoch. Dyn. 20 (2020), no. 1, Article ID 2050007.
5. M. Bossy, O. Faugeras and D. Talay,
Clarification and complement to “Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons”,
J. Math. Neurosci. 5 (2015), Paper No. 19.