Provable security against generic attacks on stream ciphers

Author:

Moch Alexander1

Affiliation:

1. Lehrstuhl für Theoretische Informatik, Universität Mannheim , 68131 Mannheim , Germany

Abstract

Abstract Recent lightweight hardware-based stream cipher designs keep an external non-volatile internal state that is not part of the cipher’s hardware module. The purpose of these so-called small-state ciphers is to keep the size of the hardware and the power consumption low. We propose a random oracle model for stream ciphers. This will allow us to analyse the recent small-state stream cipher designs’ resistance against generic attacks and, in particular, time-memory-data tradeoff attacks. We analyse the conventional construction underlying stream ciphers like Grain and Trivium, constructions continuously using the external non-volatile secret key during keystream generation like Sprout, Plantlet, Fruit, and Atom, constructions continuously using the external non-volatile IV, and constructions using a combination of the IV and the key like DRACO. We show the tightness of all bounds by first presenting the time-memory-data tradeoff attacks on the respective constructions, establishing the upper bound on security, and then presenting the proof of security to establish the lower bound on security. In this work, we extend the theoretical work done by Hamann et al. who introduced the DRACO stream cipher at FSE 2023. We use the same random oracle model as the aforementioned work and apply it to the earlier work by Hamann et al. presented at SAC 2019, which showed security for two of the four constructions we consider in this work. Our model is equivalent but allows for a much simpler proof of security. Furthermore, we provide a proof of security for stream ciphers continuously using the secret key during keystream generation, giving upper and lower bounds for all four generic stream cipher constructions proposed so far.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3