Affiliation:
1. Dipartimento di Matematica “Tullio Levi-Civita” , Università degli Studi di Padova , 35121 Padova , Italy
Abstract
Abstract
Motivated by the vanishing contact problem, we study in the present paper
the convergence of solutions of Hamilton–Jacobi equations depending nonlinearly on the unknown function. Let
H
(
x
,
p
,
u
)
{H(x,p,u)}
be a continuous Hamiltonian which is strictly increasing in u, and is convex and coercive in p. For each parameter
λ
>
0
{\lambda>0}
, we denote
by
u
λ
{u^{\lambda}}
the unique viscosity solution of the Hamilton–Jacobi equation
H
(
x
,
D
u
(
x
)
,
λ
u
(
x
)
)
=
c
.
H\big{(}x,Du(x),\lambda u(x)\big{)}=c.
Under quite general assumptions, we prove that
u
λ
{u^{\lambda}}
converges uniformly, as λ tends to zero, to a specific solution of the critical Hamilton–Jacobi equation
H
(
x
,
D
u
(
x
)
,
0
)
=
c
{H(x,Du(x),0)=c}
. We also characterize the limit solution in terms of Peierls barrier and Mather measures.
Funder
H2020 European Research Council
Subject
Applied Mathematics,Analysis
Reference39 articles.
1. E. S. Al-Aidarous, E. O. Alzahrani, H. Ishii and A. M. M. Younas,
A convergence result for the ergodic problem for Hamilton–Jacobi equations with Neumann-type boundary conditions,
Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 2, 225–242.
2. G. Barles,
Solutions de viscosité des équations de Hamilton–Jacobi,
Math. Appl. (Berlin) 17,
Springer, Paris, 1994.
3. G. Buttazzo, M. Giaquinta and S. Hildebrandt,
One-Dimensional Variational Problems. An Introduction,
Oxford Lecture Ser. Math. Appl. 15,
The Clarendon Press, New York, 1998.
4. P. Cannarsa, W. Cheng, L. Jin, K. Wang and J. Yan,
Herglotz’ variational principle and Lax–Oleinik evolution,
J. Math. Pures Appl. (9) 141 (2020), 99–136.
5. P. Cannarsa, W. Cheng, K. Wang and J. Yan,
Herglotz’ generalized variational principle and contact type Hamilton–Jacobi equations,
Trends in Control Theory and Partial Differential Equations,
Springer INdAM Ser. 32,
Springer, Cham, (2019), 39–67.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献