Integral representation for energies in linear elasticity with surface discontinuities

Author:

Crismale Vito1ORCID,Friedrich Manuel2,Solombrino Francesco3ORCID

Affiliation:

1. Centre de Mathématiques Appliquées , École Polytechnique , 91128 Palaiseau Cedex , France

2. Applied Mathematics Münster , University of Münster , Einsteinstrasse 62, 48149 Münster , Germany

3. Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” , Università degli Studi di Napoli “Federico II” , Via Cintia, Monte S. Angelo 80126 Napoli , Italy

Abstract

Abstract In this paper we prove an integral representation formula for a general class of energies defined on the space of generalized special functions of bounded deformation ( GSBD p {\mathrm{GSBD}^{p}} ) in arbitrary space dimensions. Functionals of this type naturally arise in the modeling of linear elastic solids with surface discontinuities including phenomena as fracture, damage, surface tension between different elastic phases, or material voids. Our approach is based on the global method for relaxation devised in [G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation, Arch. Ration. Mech. Anal. 145 1998, 1, 51–98] and a recent Korn-type inequality in GSBD p {\mathrm{GSBD}^{p}} , cf. [F. Cagnetti, A. Chambolle and L. Scardia, Korn and Poincaré–Korn inequalities for functions with a small jump set, preprint 2020]. Our general strategy also allows to generalize integral representation results in SBD p {\mathrm{SBD}^{p}} , obtained in dimension two [S. Conti, M. Focardi and F. Iurlano, Integral representation for functionals defined on SBD p \mathrm{SBD}^{p} in dimension two, Arch. Ration. Mech. Anal. 223 2017, 3, 1337–1374], to higher dimensions, and to revisit results in the framework of generalized special functions of bounded variation ( GSBV p {\mathrm{GSBV}^{p}} ).

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference50 articles.

1. G. Alberti, Integral representation of local functionals, Ann. Mat. Pura Appl. (4) 165 (1993), 49–86.

2. L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence, J. Math. Pures Appl. (9) 69 (1990), no. 3, 285–305.

3. L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl. (9) 69 (1990), no. 3, 307–333.

4. L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal. 139 (1997), no. 3, 201–238.

5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., Clarendon Press, New York, 2000.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3