Affiliation:
1. Centre de Mathématiques Appliquées , École Polytechnique , 91128 Palaiseau Cedex , France
2. Applied Mathematics Münster , University of Münster , Einsteinstrasse 62, 48149 Münster , Germany
3. Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” , Università degli Studi di Napoli “Federico II” , Via Cintia, Monte S. Angelo 80126 Napoli , Italy
Abstract
Abstract
In this paper we prove an integral representation formula for a general class of energies defined on the space of generalized special functions of bounded deformation (
GSBD
p
{\mathrm{GSBD}^{p}}
) in arbitrary space dimensions. Functionals of this type naturally arise in the modeling of linear elastic solids with surface discontinuities including phenomena as fracture, damage, surface tension between different elastic phases, or material voids. Our approach is based on the global method for relaxation devised in [G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation, Arch. Ration. Mech. Anal. 145 1998, 1, 51–98] and a recent Korn-type inequality in
GSBD
p
{\mathrm{GSBD}^{p}}
, cf. [F. Cagnetti, A. Chambolle and L. Scardia, Korn and Poincaré–Korn inequalities for functions with a small jump set, preprint 2020]. Our general strategy also allows to generalize integral representation results in
SBD
p
{\mathrm{SBD}^{p}}
, obtained in dimension two [S. Conti, M. Focardi and F. Iurlano, Integral representation for functionals defined on
SBD
p
\mathrm{SBD}^{p}
in dimension two, Arch. Ration. Mech. Anal. 223 2017, 3, 1337–1374], to higher dimensions, and to revisit results in the framework of generalized special functions of bounded variation (
GSBV
p
{\mathrm{GSBV}^{p}}
).
Funder
Horizon 2020 Framework Programme
Deutsche Forschungsgemeinschaft
Ministero dell’Istruzione, dell’Università e della Ricerca
Subject
Applied Mathematics,Analysis
Reference50 articles.
1. G. Alberti,
Integral representation of local functionals,
Ann. Mat. Pura Appl. (4) 165 (1993), 49–86.
2. L. Ambrosio and A. Braides,
Functionals defined on partitions in sets of finite perimeter. I. Integral representation and Γ-convergence,
J. Math. Pures Appl. (9) 69 (1990), no. 3, 285–305.
3. L. Ambrosio and A. Braides,
Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization,
J. Math. Pures Appl. (9) 69 (1990), no. 3, 307–333.
4. L. Ambrosio, A. Coscia and G. Dal Maso,
Fine properties of functions with bounded deformation,
Arch. Ration. Mech. Anal. 139 (1997), no. 3, 201–238.
5. L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Math. Monogr.,
Clarendon Press, New York, 2000.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献