Optimal regularity of stable solutions to nonlinear equations involving the p-Laplacian

Author:

Cabré Xavier1ORCID,Miraglio Pietro2ORCID,Sanchón Manel3ORCID

Affiliation:

1. ICREA , Pg. Lluis Companys 23; and Departament de Matemàtiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona , Spain

2. Institute for Renewable Energy , Eurac Research , Via A. Volta 13/A, 39100 Bolzano , Italy

3. Grupo AIA – Aplicaciones en Informática Avanzada , SL, ESADECREAPOLIS Planta 2a Bloc C Portal 1, Av. Torre Blanca 57, CP-08172 Sant Cugat del Vallès , Spain

Abstract

Abstract We consider the equation - Δ p u = f ( u ) {-\Delta_{p}u=f(u)} in a smooth bounded domain of n {\mathbb{R}^{n}} , where Δ p {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if n p + 4 p p - 1 {n\geq p+\frac{4p}{p-1}} . Instead, when n < p + 4 p p - 1 {n<p+\frac{4p}{p-1}} , stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior C α {C^{\alpha}} bound for stable solutions which holds for every nonnegative f C 1 {f\in C^{1}} whenever p 2 {p\geq 2} and the optimal condition n < p + 4 p p - 1 {n<p+\frac{4p}{p-1}} holds. When p ( 1 , 2 ) {p\in(1,2)} , we obtain the same result under the nonsharp assumption n < 5 p {n<5p} . These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when p = 2 {p=2} in the optimal range n < 10 {n<10} .

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Departament d’Empresa i Coneixement, Generalitat de Catalunya

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference38 articles.

1. D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

2. W. K. Allard, On the First Variation of a Varifold, Ann. of Math. 95 (1972), 417–491.

3. H. Brezis, Is there failure of the inverse function theorem?, Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations, New Stud. Adv. Math. 1, International Press, Somerville (2003), 23–33.

4. H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for ut-Δ⁢u=g⁢(u){u_{t}-\Delta u=g(u)} revisited, Adv. Differential Equations 1 (1996), 73–90.

5. H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Complut. 10 (1997), 443–469.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3