A note on Kazdan–Warner equation on networks

Author:

Camilli Fabio1,Marchi Claudio2ORCID

Affiliation:

1. Dipartimento di Scienze di Base e Applicate per l’Ingegneria , Sapienza Università di Roma , via Scarpa 16, 00161 Roma , Italy

2. Dipartimento di Ingegneria dell’Informazione & Dipartimento di Matematica “Tullio Levi-Civita” , Università di Padova , via Gradenigo 6/B, 35131 Padova , Italy

Abstract

Abstract We investigate the Kazdan–Warner equation on a network. In this case, the differential equation is defined on each edge, while appropriate transition conditions of Kirchhoff type are prescribed at the vertices. We show that the whole Kazdan–Warner theory, both for the noncritical and the critical case, extends to the present setting.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference21 articles.

1. Y. Achdou, M.-K. Dao, O. Ley and N. Tchou, A class of infinite horizon mean field games on networks, Netw. Heterog. Media 14 (2019), no. 3, 537–566.

2. R. Adami, E. Serra and P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 743–761.

3. F. Ali Mehmeti, Nonlinear Waves in Networks, Math. Res. 80, Akademie, Berlin, 1994.

4. G. Barles and E. Chasseigne, An illustrated guide of the modern approaches of Hamilton–Jacobi equations and control problems with discontinuities, preprint (2018), https://arxiv.org/abs/1812.09197.

5. G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Math. Surveys Monogr. 186, American Mathematical Society, Providence, 2013.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological degree for Kazdan–Warner equation in the negative case on finite graph;Annals of Global Analysis and Geometry;2024-06

2. Semi-linear elliptic inequalities on weighted graphs;Calculus of Variations and Partial Differential Equations;2022-12-24

3. Sharp Liouville type results for semilinear elliptic inequalities involving gradient terms on weighted graphs;Discrete and Continuous Dynamical Systems - S;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3