On sub-Riemannian geodesic curvature in dimension three

Author:

Barilari Davide1ORCID,Kohli Mathieu2

Affiliation:

1. Dipartimento di Matematica “Tullio Levi-Civita” , Universitá degli Studi di Padova , Padova , Italy

2. CMAP , École Polytechnique , Palaiseau , France

Abstract

Abstract We introduce a notion of geodesic curvature k ζ k_{\zeta} for a smooth horizontal curve 𝜁 in a three-dimensional contact sub-Riemannian manifold, measuring how much a horizontal curve is far from being a geodesic. We show that the geodesic curvature appears as the first corrective term in the Taylor expansion of the sub-Riemannian distance between two points on a unit speed horizontal curve d SR 2 ( ζ ( t ) , ζ ( t + ε ) ) = ε 2 - k ζ 2 ( t ) 720 ε 6 + o ( ε 6 ) . d_{\mathrm{SR}}^{2}(\zeta(t),\zeta(t+\varepsilon))=\varepsilon^{2}-\frac{k_{\zeta}^{2}(t)}{720}\varepsilon^{6}+o(\varepsilon^{6}). The sub-Riemannian distance is not smooth on the diagonal; hence the result contains the existence of such an asymptotics. This can be seen as a higher-order differentiability property of the sub-Riemannian distance along smooth horizontal curves. It generalizes the previously known results on the Heisenberg group.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3