Finite element approximations for fractional evolution problems
Author:
Affiliation:
1. IMAS - CONICET and Departamento de Matemática , FCEyN - Universidad de Buenos Aires, Ciudad Universitaria , Pabellón I (1428) , Buenos Aires , Argentina
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics,Analysis
Link
https://www.degruyter.com/document/doi/10.1515/fca-2019-0042/pdf
Reference49 articles.
1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics, Washington D.C. (1964).
2. G. Acosta, F. Bersetche, and J.P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian.Comp. Math. Appl. 74, No 4 (2017), 784–816; 10.1016/j.camwa.2017.05.026.
3. G. Acosta and J.P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations.SIAM J. Numer. Anal. 55, No 2 (2017), 472–495; 10.1137/15M1033952.
4. G. Acosta, J.P. Borthagaray, O. Bruno, and M. Maas, Regularity theory and high order numerical methods for the (1D)-fractional Laplacian.Math. Comp. 87, No 312 (2018), 1821–1857; 10.1090/mcom/3276.
5. M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver.Comput. Methods Appl. Mech. Engrg. 327 (2017), 4–35; 10.1016/j.cma.2017.08.019.
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Numerical methods for forward fractional Feynman–Kac equation;Advances in Computational Mathematics;2024-06
2. Numerical Analysis for Stochastic Time-Space Fractional Diffusion Equation Driven By Fractional Gaussian Noise;Journal of Computational Mathematics;2023-11
3. Anomalous and nonergodic multiscale modeling, analyses and algorithms;SCIENTIA SINICA Mathematica;2023-06-29
4. A Sharp $\alpha$-Robust $L1$ Scheme on Graded Meshes for Two-Dimensional Time Tempered Fractional Fokker-Planck Equation;International Journal of Numerical Analysis and Modeling;2023-06
5. Sharp error estimates for spatial-temporal finite difference approximations to fractional sub-diffusion equation without regularity assumption on the exact solution;Fractional Calculus and Applied Analysis;2023-05-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3