Cage amines in the metal–organic frameworks chemistry

Author:

Sapchenko Sergey A.12,Dybtsev Danil N.12,Fedin Vladimir P.12

Affiliation:

1. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

2. Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russian Federation

Abstract

AbstractNitrogen-rich porous materials have outstanding gas sorption and separation capacity. Using cage amines in the synthesis of metal–organic frameworks is a simple approach for generating the free nitrogen donor centers within the channels of porous materials without the post-synthetic modification. 1,4-Diazabicyclo[2.2.2]octane has a linear arrangement of nitrogen centers and can be used as a linear linker for the design of porous MOF materials. Urotropine has four nitrogen atoms and can act as a tetrahedral four-connected, pyramidal three-connected or bent two-connected linker. Such a diversity of coordination possibilities enriches the structural chemistry of MOFs and allows obtaining the frameworks with unique secondary building units and topology. The presence of cage amines in the structure affects the sorption characteristics of the materials. They demonstrate high selectivity to CO2 and can participate as a heterogeneous base catalyst in the organic reactions. Besides that the cage-amine based metal–organic frameworks demonstrate photoluminescent properties and can be used as nanoreactors for photochemical transformations. These compounds are also an important object of thermodynamic studies helping us better understand the nature of host–guest interaction in the supramolecular systems.

Funder

Russian Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3