The Use of Quantum-Chemical Semiempirical Methods to Calculate the Lattice Energies of Organic Molecular Crystals. Part II: The Lattice Energies of α- and β-Oxalic Acid (COOH)2

Author:

Raabe Gerhard1

Affiliation:

1. 1Institut für Organische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen, Prof.-Pirlet-Straße 1, D-52056 Aachen

Abstract

The lattice energies (ΔE lat) of α- and β-oxalic acid ((COOH)2) have been calculated using a recently introduced semiempirical quantum-chemical procedure. Within the framework of this method the lattice energy (ΔE lat) is evaluated as the sum of the semiempirically calculated intermolecular dispersion (ΔEdis), induction (ΔEind), repulsion (ΔErep), and electrostatic energy (ΔEels). The lattice energies of the two polymorphs of oxalic acid obtained in this way correlate not only with the results of other calculations but also with the experimentally determined heats of sublimation in that the α-modification, which has a somewhat higher heat of sublimation, is slightly more stable than the β-polymorph. However, additional quantum-chemical calculations at the non-empirical ab initio level (e. g. ZPE+MP2(FC)/6-311++G**//MP2(FC)/6-311++G**) revealed that the absolute values of the lattice energies and the heats of sublimation are not directly comparable to each other because the structures of the (COOH)2 molecules in the crystal lattices of both polymorphs differ significantly from that of the most stable form of the free molecule in the gasphase. At about 4.3 kcal/mol the calculated energy difference between the structure of the molecule in the solid state and the energetically most favourable conformation of the free (COOH)2 molecule in the gasphase is much smaller than that in the recently described case of α-glycine (28±2 kcal/mol). However, even such a small difference might be the source of serious problems if the heats of sublimation are employed to fit parameters to be used in the optimization of crystal packings.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3