Conductivity and Permittivity Studies in the Diluted Perovskite System [(NH3)(CH2)6(NH3)]FexZn1-xCl4, x=1, 0.8, 0.5, and 0

Author:

Mostafa M. F.1,AbdelKader M. M.1,Arafat S. S.1

Affiliation:

1. 1Physics Dept. Faculty of Science, University of Cairo, Giza, Egypt

Abstract

The dielectric permittivity and AC conductivity of the perovskite-like system [(NH3)(CH2)6(NH3)]FexZn1-xCl4 (HDAFxZ1-x), where x=1, 0.8, 0.5 and 0, were measured at different frequencies in the temperature range 100 K<T<430 K. At temperatures below 273 K, for x=1 the material exhibits a transition at (245±1) K, while for x=0 transitions at (155±5) K, (220±4) K and (255±2) K were found. A rotational-type transition in the range 295 - 305 K was found for the Fe-containing materials. Ferroelectric transitions were observed in the high temperature region for all four concentrations. Differential thermal scanning confirmed the existence of the phase transitions above room temperature. The conductivity decreases with Zn addition, an the conduction mechanism varies with the temperature and concentration. Extrinsic conduction prevails for T<150 K for all concentrations. At intermediate temperatures an Arrhenius relation with frequency dependent activation energy (ΔE=0.46 - 0.06 eV) is observed for Fecontaining materials. The frequency dependent conductivity for all materials has a linear response following the power law: σac=A(T) ·ωS(T) with the exponent s varying with temperature and composition. At high temperatures, for Zn-rich materials series type conduction with s ∼ 0.6±0.1 is identified, while for Fe-rich materials band type conduction prevails. In the low temperature region ionic hopping prevails.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3