Affiliation:
1. Pontificia Universidad Católica de Chile , Santiago , Chile
Abstract
Abstract
We study a concept of renormalized solution to the problem
{
-
Δ
p
u
=
0
in
ℝ
+
N
,
|
∇
u
|
p
-
2
u
ν
+
g
(
u
)
=
μ
on
∂
ℝ
+
N
,
\begin{cases}-\Delta_{p}u=0&\mbox{in }{\mathbb{R}}^{N}_{+},\\
\lvert\nabla u\rvert^{p-2}u_{\nu}+g(u)=\mu&\mbox{on }\partial{\mathbb{R}}^{N}_%
{+},\end{cases}
where
1
<
p
≤
N
{1<p\leq N}
,
N
≥
2
{N\geq 2}
,
ℝ
+
N
=
{
(
x
′
,
x
N
)
:
x
′
∈
ℝ
N
-
1
,
x
N
>
0
}
{{\mathbb{R}}^{N}_{+}=\{(x^{\prime},x_{N}):x^{\prime}\in{\mathbb{R}}^{N-1},\,x%
_{N}>0\}}
,
u
ν
{u_{\nu}}
is the normal derivative of u, μ is a bounded Radon measure, and
g
:
ℝ
→
ℝ
{g:{\mathbb{R}}\rightarrow{\mathbb{R}}}
is a continuous function. We prove stability results and, using the symmetry of the domain, apriori estimates on hyperplanes, and potential methods, we obtain several existence results. In particular, we show existence of solutions for problems with nonlinear terms of absorption type in both the subcritical and supercritical case. For the problem with source we study the power nonlinearity
g
(
u
)
=
-
u
q
{g(u)=-u^{q}}
, showing existence in the supercritical case, and nonexistence in the subcritical one. We also give a characterization of removable sets when
μ
≡
0
{\mu\equiv 0}
and
g
(
u
)
=
-
u
q
{g(u)=-u^{q}}
in the supercritical case.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference24 articles.
1. E. Azroul, A. Barbara, M. B. Benboubker and S. Ouaro,
Renormalized solutions for a p(x)p(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions and L1L^{1}-data,
An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 1, 9–22.
2. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez,
An L1L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations,
Ann. Sc. Norm. Supér. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241–273.
3. M. F. Bidaut-Véron,
Removable singularities and existence for a quasilinear equation with absorption or source term and measure data,
Adv. Nonlinear Stud. 3 (2003), no. 1, 25–63.
4. M.-F. Bidaut-Véron, N. Q. Hung and L. Véron,
Quasilinear Lane–Emden equations with absorption and measure data,
J. Math. Pures Appl. (9) 102 (2014), no. 2, 315–337.
10.1016/j.matpur.2013.11.011
5. L. Boccardo, T. Gallouët and L. Orsina,
Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data,
Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 539–551.
10.1016/S0294-1449(16)30113-5
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献