p-Harmonic Functions in ℝ N + with Nonlinear Neumann Boundary Conditions and Measure Data

Author:

Aguirre Natham1

Affiliation:

1. Pontificia Universidad Católica de Chile , Santiago , Chile

Abstract

Abstract We study a concept of renormalized solution to the problem { - Δ p u = 0 in  + N , | u | p - 2 u ν + g ( u ) = μ on  + N , \begin{cases}-\Delta_{p}u=0&\mbox{in }{\mathbb{R}}^{N}_{+},\\ \lvert\nabla u\rvert^{p-2}u_{\nu}+g(u)=\mu&\mbox{on }\partial{\mathbb{R}}^{N}_% {+},\end{cases} where 1 < p N {1<p\leq N} , N 2 {N\geq 2} , + N = { ( x , x N ) : x N - 1 , x N > 0 } {{\mathbb{R}}^{N}_{+}=\{(x^{\prime},x_{N}):x^{\prime}\in{\mathbb{R}}^{N-1},\,x% _{N}>0\}} , u ν {u_{\nu}} is the normal derivative of u, μ is a bounded Radon measure, and g : {g:{\mathbb{R}}\rightarrow{\mathbb{R}}} is a continuous function. We prove stability results and, using the symmetry of the domain, apriori estimates on hyperplanes, and potential methods, we obtain several existence results. In particular, we show existence of solutions for problems with nonlinear terms of absorption type in both the subcritical and supercritical case. For the problem with source we study the power nonlinearity g ( u ) = - u q {g(u)=-u^{q}} , showing existence in the supercritical case, and nonexistence in the subcritical one. We also give a characterization of removable sets when μ 0 {\mu\equiv 0} and g ( u ) = - u q {g(u)=-u^{q}} in the supercritical case.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference24 articles.

1. E. Azroul, A. Barbara, M. B. Benboubker and S. Ouaro, Renormalized solutions for a p⁢(x)p(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions and L1L^{1}-data, An. Univ. Craiova Ser. Mat. Inform. 40 (2013), no. 1, 9–22.

2. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L1L^{1}-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Supér. Pisa Cl. Sci. (4) 22 (1995), no. 2, 241–273.

3. M. F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud. 3 (2003), no. 1, 25–63.

4. M.-F. Bidaut-Véron, N. Q. Hung and L. Véron, Quasilinear Lane–Emden equations with absorption and measure data, J. Math. Pures Appl. (9) 102 (2014), no. 2, 315–337. 10.1016/j.matpur.2013.11.011

5. L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 539–551. 10.1016/S0294-1449(16)30113-5

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removable singularities in the boundary for quasilinear elliptic equations;Nonlinear Differential Equations and Applications NoDEA;2024-04-27

2. Quasilinear elliptic equations involving measure valued absorption terms and measure data;Journal d'Analyse Mathématique;2023-12-12

3. p-harmonic functions with nonlinear Neumann conditions on the sphere and measure data;Complex Variables and Elliptic Equations;2023-07-24

4. On critical nonlinear boundary problems for p-harmonic functions on Riemannian manifolds;Complex Variables and Elliptic Equations;2022-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3