Global Components of Positive Bounded Variation Solutions of a One-Dimensional Indefinite Quasilinear Neumann Problem

Author:

López-Gómez Julian1,Omari Pierpaolo2ORCID

Affiliation:

1. Departamento de Análisis Matemático y Matemática Aplicada , Instituto de Matemática Interdisciplinar (IMI) , Universidad Complutense de Madrid , Plaza de Ciencias 3, 28040 Madrid , Spain

2. Sezione di Matematica e Informatica , Dipartimento di Matematica e Geoscienze , Università degli Studi di Trieste , Via A. Valerio 12/1, 34127 Trieste , Italy

Abstract

Abstract This paper investigates the topological structure of the set of the positive solutions of the one-dimensional quasilinear indefinite Neumann problem { - ( u 1 + u 2 ) = λ a ( x ) f ( u ) in  ( 0 , 1 ) , u ( 0 ) = 0 , u ( 1 ) = 0 , \begin{dcases}-\Bigg{(}\frac{u^{\prime}}{\sqrt{1+{u^{\prime}}^{2}}}\Bigg{)}^{% \prime}=\lambda a(x)f(u)\quad\text{in }(0,1),\\ u^{\prime}(0)=0,\quad u^{\prime}(1)=0,\end{dcases} where λ {\lambda\in\mathbb{R}} is a parameter, a L ( 0 , 1 ) {a\in L^{\infty}(0,1)} changes sign, and f C 1 ( ) {f\in C^{1}(\mathbb{R})} is positive in ( 0 , + ) {(0,+\infty)} . The attention is focused on the case f ( 0 ) = 0 {f(0)=0} and f ( 0 ) = 1 {f^{\prime}(0)=1} , where we can prove, likely for the first time in the literature, a bifurcation result for this problem in the space of bounded variation functions. Namely, the existence of global connected components of the set of the positive solutions, emanating from the line of the trivial solutions at the two principal eigenvalues of the linearized problem around 0, is established. The solutions in these components are regular, as long as they are small, while they may develop jump singularities at the nodes of the weight function a, as they become larger, thus showing the possible coexistence along the same component of regular and singular solutions.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3