Multi-objective optimization of the aerodynamic performance of butterfly-shaped film cooling holes in rocket thrust chamber

Author:

Yu Ningning1,Wang Zhongwei1,Lu Yuming1,Xu Weicheng1,Shan Yiming1,Zhang Hai1ORCID

Affiliation:

1. School of Harbin Engineering University , Harbin , 150001 , P.R. China

Abstract

Abstract This study uses Multi-Island Genetic Algorithm (MIGA) and three-dimensional Computational Fluid Dynamics (CFD) software to optimize butterfly-shaped film cooling holes in the upper-stage rocket engine thrust chamber. The goal is to meet thermal protection and thrust requirements at high altitudes without re-ignition. To facilitate an all-encompassing worldwide search, the holes in the optimized design remain at set dimensions. Film continuity and stability at the nozzle outlet are greatly impacted by the hole structure. Inlet and divergence angles have little effect on thrust, according to regression research, but lip height (de) and outlet width (β) have a big impact on cold gas ejection, which affects cooling and thrust. Optimized results lead to a 20.49 K decrease in the monitoring section’s average wall temperature and a 52.8 N boost in thrust by reducing interference between supersonic airflow and extending film stability.

Publisher

Walter de Gruyter GmbH

Reference26 articles.

1. Nie, W, Feng, S. Liquid rocket engine combustion dynamics models and numerical calculations. Beijing: National Defense Industry Press; 2011.

2. Cai, G. Liquid rocket engine gas-gas combustion and gas-gas injector technology. Beijing: National Defense Industry Press; 2012.

3. China Aerospace Industry Corporation. World encyclopedia of missiles and space engines. Beijing: Military Science Press; 1999.

4. Aupoix, B, Mignosi, A, Viala, S, Bouvier, F, Gaillard, R. Experimental and numerical study of supersonic film cooling. AIAA J 1998;36:915–23. https://doi.org/10.2514/2.495.

5. Bunker, RS. A review of shaped hole turbine film cooling technology. Heat Tran 2005;127:441–53. https://doi.org/10.1115/1.1860562.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3