Affiliation:
1. School of Power and Energy , Northwestern Polytechnical University , Shaanxi , Xi’an 710129 , China
Abstract
Abstract
To optimize the integrated flameholder, PIV was used to study flow fields of V-gutter and integrated flameholder under both non-reacting and reacting conditions. PLIF, high-speed cameras, and TDLAS were adopted to capture OH distribution, flame structure, and temperature distribution. Comparative analysis of flow fields, combustion characteristics and flame stabilization mechanisms were analyzed. Results show that heat release increases adverse pressure gradient, which can enlarge the recirculation zone size and recirculation rate compared to non-reacting flow field. The flames of both flameholders exhibit symmetrical structures distributed near the shear layers. The blockage ratio dominates the non-reacting flow field, while the expansion angle dominates the reacting flow field, which can further increase the adverse pressure gradient under reacting condition. The V-gutter flameholder demonstrates better fuel/air mixing and larger recirculation than the integrated flameholder. The combustion performance of the integrated flameholder is inferior to the V-gutter flameholder, albeit with better flow resistance properties.
Funder
National Major Science and Technology Projects of China