Decomposition of multi-output functions oriented to configurability of logic blocks

Author:

Kubica M.,Kania D.

Abstract

AbstractThe main goal of the paper is to present a logic synthesis strategy dedicated to an LUT-based FPGA. New elements of the proposed synthesis strategy include: an original method of function decomposition, non-disjoint decomposition, and technology mapping dedicated to configurability of logic blocks. The aim of all of the proposed synthesis approaches is the sharing of appropriately configured logic blocks. Innovation of the methods is based on the way of searching decomposition, which relies on multiple cutting of an MTBDD diagram describing a multi-output function. The essence of the proposed algorithms rests on the method of unicoding dedicated to sharing resources, searching non-disjoint decomposition on the basis of the partition of root tables, and choosing the levels of diagram cutting that will guarantee the best mapping to complex logic blocks. The methods mentioned above were implemented in the MultiDec tool. The efficiency of the analyzed methods was experimentally confirmed by comparing the synthesis results with both academic and commercial tools.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference21 articles.

1. Area - oriented technology mapping for LUT - based logic blocks of and ( in press );Kubica;International Journal Applied Mathematics Computer Science

2. OBDD - based function decomposition : Algorithms and implementation IEEE Transactions on Computer - Aided;Lai;Design,1996

3. Improvements to technology mapping for LUT - based FPGAs IEEE Aided Design Integr Circuits;Mishchenko;Trans Comput Syst,2007

4. ALMmap : Technology mapping for FPGAs with adaptive logic modules ACM International Conference on Computer - Aided Design;Liang;IEEE,2010

5. BDS : A BDD - based logic optimization system IEEE Comput - Aided Design Integr Circuits;Yang;Trans Syst,2002

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3