Indoor positioning based on foot-mounted IMU

Author:

Guo H.,Uradzinski M.,Yin H.,Yu M.

Abstract

Abstract The paper presents the results of the project which examines the level of accuracy that can be achieved in precision indoor positioning by using a pedestrian dead reckoning (PDR) method. This project is focused on estimating the position using step detection technique based on foot-mounted IMU. The approach is sensor-fusion by using accelerometers, gyroscopes and magnetometers after initial alignment is completed. By estimating and compensating the drift errors in each step, the proposed method can reduce errors during the footsteps. There is an advantage of the step detection combined with ZUPT and ZARU for calculating the actual position, distance travelled and estimating the IMU sensors’ inherent accumulated error by EKF. Based on the above discussion, all algorithms are derived in detail in the paper. Several tests with an Xsens IMU device have been performed in order to evaluate the performance of the proposed method. The final results show that the dead reckoning positioning average position error did not exceed 0.88 m (0.2% to 1.73% of the total traveled distance – normally ranges from 0.3% to 10%), what is very promising for future handheld indoor navigation systems that can be used in large office buildings, malls, museums, hospitals, etc.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference6 articles.

1. Advanced integration of WIFI and inertial navigation systems for indoor mobile positioning EURASIP Processing;Evennou;Applied Signal,2006

2. Indoor pedestrian navigation using an INS / EKF framework for yaw drift reduction and a foot - mounted IMU th Workshop on Positioning Navigation and Communication CD - ROM;Jimeěnez;Proc,2010

3. RSS and IMU indoor navigation information fusion system in zigbee wireless sensor networks University Graduated Thesis University;Wang;Taiwan,2005

4. Camera navigation support in a virtual environment Pol;Wojciechowski;Bull Tech,2013

5. Pedestrian tracking with shoe - mounted inertial sensors Graphics and Applications;Foxlin;IEEE Computer,2005

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3