Control system architecture for the investigation of motion control algorithms on an example of the mobile platform Rex

Author:

Janiak M.,Zieliński C.

Abstract

Abstract This paper presets the specification and implementation of the control system of the mobile platform Rex. The presented system structure and the description of its functioning result from the application of a formal method of designing such systems. This formalism is based on the concept of an embodied agent. The behaviours of its subsystems are specified in terms of transition functions that compute, out of the variables contained in the internal memory and the input buffers, the values that are inserted into the output buffers and the internal memory. The transition functions are the parameters of elementary actions, which in turn are used in behaviour patterns which are the building blocks of the subsystems of the designed control system. Rex is a skid steering platform, with four independently actuated wheels. It is represented by a single agent that implements the locomotion functionality. The agent consists of a control subsystem, a virtual effector and a virtual receptor. Each of those subsystems is discussed in details. Both the data structures and the transition functions defining their behaviours are described. The locomotion agent is a part of the control system of the autonomous exploration and rescue robot developed within the RobREx project.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference22 articles.

1. Motion planning of the trident snake robot equipped with passive or active wheels Bull Pol;Paszuk;Tech,2012

2. Motion generation in the MRROC + robot programming framework;Zieliński;Int J Robotics Research,2010

3. Real - time motion tracking using optical flow on multiple GPUs Bull Pol;Mahmoudi;Tech,2014

4. Constrained robot motion planning : Imbalanced jacobian algorithm vs optimal control approach Methods and Models in Automation and Robotics ( MMAR th Conf;Janiak;Int,2010

5. Robust control of differentially driven mobile platforms Robot Motion and Control in Control and Information;Mazur;Sciences,2011

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3