Microstructure characterization of localized corrosion wear of Cr/Cr2N+ a-C:H/a-C:H:Cr multilayer coatings on carbon fiber composites

Author:

Janusz M.,Major L.,Lackner J. M.,Grysakowski B.,Krawiec H.

Abstract

Abstract The use of carbon fiber composites (CFC) for different applications is widespread. Carbon-based materials show, however, significant oxidative degradation in air. Modern materials are subjected to aggressive, corrosive environment. This type of environment may strongly reduce their mechanical properties. For the protection of CFC, it was necessary to apply coatings to the composite surface. In the presented paper, a chromium/chromium nitride (Cr/Cr2N) multilayer structure has been selected as the inner part. The outer part of the coating was a hydrogenated amorphous carbon (a-C:H), gradually implanted by Cr nanocrystals. The application of transmission electron microscopy (TEM) indicated that the proposed deposition method allowed the formation of a Cr/Cr2N multilayer of Λ = 150 nm, topped with a-C:H+ Cr23C6 composite of a varied carbides density. The micro-hardness of the deposited coatings was up to 14 GPa (at a load of 2 and 5 mN). The microstructure of the deposited coatings was described in detail by means of TEM in the authors’ recently published paper [1]. This paper is a continuation thereof, aimed at describing microstructure changes after a localized corrosion process. In order to study localized corrosion in coatings, particularly in metallic (Cr) interlayers, the potential measurements and voltammetry experiments were performed in a Ringer solution. The open-circuit potential reaches stable values after a sufficient time period. The results indicated that the presence of a-C:H+Cr23C6, the outer part of the coating, speeds up the localized corrosion process in Cr interlayers in the inner part of a coating.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference19 articles.

1. On the evaluation of corrosion resistances of amorphous chromium - carbon thin - films;Högström;Electrochim Acta Mater,2014

2. Corrosion resistance of chromium nitride on low alloy steels by cathodic arc deposition A;Han;Vac Sci Technol,2001

3. Industrially - scaled large - area and high - rate tribological coating by pulsed laser deposition;Lackner;Surf Coat Technol,2005

4. Friction and wear in dry water - and oil - lubricated DLC against alumina and DLC against steel contact;Ronkainen;Wear,1998

5. Structure - property relations in Cr coatings deposited by reactive magnetron sputtering;Gassner;Surf Coat Technol,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3