Multimodal face recognition method with two-dimensional hidden Markov model

Author:

Bobulski J.

Abstract

Abstract The paper presents a new solution for the face recognition based on two-dimensional hidden Markov models. The traditional HMM uses one-dimensional data vectors, which is a drawback in the case of 2D and 3D image processing, because part of the information is lost during the conversion to one-dimensional features vector. The paper presents a concept of the full ergodic 2DHMM, which can be used in 2D and 3D face recognition. The experimental results demonstrate that the system based on two dimensional hidden Markov models is able to achieve a good recognition rate for 2D, 3D and multimodal (2D+3D) face images recognition, and is faster than ICP method.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference16 articles.

1. An evaluation of multimodal face biometrics IEEE Transaction on Pattern Analysis and Machine;Chang;Intelligence,2005

2. Face recognition based on depth and curvature features Computer Vision and Pattern;Gordon;Recognition,1992

3. - based face recognition method Image Processing;Bobulski;Comunication Chalenges,2016

4. Matching face scans to models Transactions on Pattern Analysis and Machine;Lu;IEEE Intelligence,2006

5. An analytic solution for estimating two - dimensional hidden Markov models Mathematics and Computation;Yujian;Applied,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3