Model of multiple-layer pavement structure-subsoil system

Author:

Kadela M.

Abstract

Abstract Progress made in recent years has brought about a high demand for increasingly modern structural and technological solutions. Each structure should in turn be designed and built to show sufficient durability for the intended period of use. The requirement of durability is met if, throughout its intended lifetime, the structure fulfils its roles regarding load-bearing capacity, serviceability limits and stability without excessive, unexpected costs. Due to the above, a need arises to predict the response of an engineering structure to given loads throughout its life. Thus it becomes increasingly common to employ numerical analyses using the finite elements method (FEM), both on the design stage and later, for the purposes of evaluating the state of a specific structure. However, a numerical calculation model may be constructed in different ways. This paper presents the impact of geometry of the model, the choice of a discretization mesh and the choice of a continuous 3D or 2D model corresponding to pavement-subgrade system calculation model. 3-dimensional modelling was carried out in this paper as full modelling of actual engineering problems in 3-dimensional space, and in the form of simplified modelling using axial symmetry. In the model, a traditional multi-layer pavement structure was considered. Criterion values obtained in numerical analyses were compared to values obtained with the use of VEROAD software.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics

Reference26 articles.

1. Consolidation of soil with weak layers reinforced by gravel columns and geosynthetic nd Problem - solving Conference Interaction of structures with subgrade in Polish;Gwóźdź;Proc,2004

2. Three - dimensional finite element model for flexible pavement analyses based on field modulus measurements The Arabian Journal for Science and;Lacey;Engineering,2008

3. Finite element analysis for airfield asphalt pavements rutting prediction Bull;Leonardi;Tech,2015

4. and Accelerated pavement testing and modeling of reflective cracking in pavements Engineering Failure;Perez;Analysis,2007

5. Compactness of scrap tyre rubber aggregates in standard proctor test Proc of;Kowalska;Proc Eng,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3