Automobile Driver Fingerprinting

Author:

Enev Miro1,Takakuwa Alex1,Koscher Karl2,Kohno Tadayoshi

Affiliation:

1. University of Washington

2. University of California, San Diego

Abstract

Abstract Today’s automobiles leverage powerful sensors and embedded computers to optimize efficiency, safety, and driver engagement. However the complexity of possible inferences using in-car sensor data is not well understood. While we do not know of attempts by automotive manufacturers or makers of after-market components (like insurance dongles) to violate privacy, a key question we ask is: could they (or their collection and later accidental leaks of data) violate a driver’s privacy? In the present study, we experimentally investigate the potential to identify individuals using sensor data snippets of their natural driving behavior. More specifically we record the in-vehicle sensor data on the controllerarea- network (CAN) of a typical modern vehicle (popular 2009 sedan) as each of 15 participants (a) performed a series of maneuvers in an isolated parking lot, and (b) drove the vehicle in traffic along a defined ~ 50 mile loop through the Seattle metropolitan area. We then split the data into training and testing sets, train an ensemble of classifiers, and evaluate identification accuracy of test data queries by looking at the highest voted candidate when considering all possible one-vs-one comparisons. Our results indicate that, at least among small sets, drivers are indeed distinguishable using only incar sensors. In particular, we find that it is possible to differentiate our 15 drivers with 100% accuracy when training with all of the available sensors using 90% of driving data from each person. Furthermore, it is possible to reach high identification rates using less than 8 minutes of training data. When more training data is available it is possible to reach very high identification using only a single sensor (e.g., the brake pedal). As an extension, we also demonstrate the feasibility of performing driver identification across multiple days of data collection

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on the Applications of Frontier AI, Foundation Models, and Large Language Models to Intelligent Transportation Systems;2023 International Conference on Computer and Applications (ICCA);2023-11-28

2. DeepCAN: Hybrid Method for Road Type Classification Using Vehicle Sensor Data for Smart Autonomous Mobility;IEEE Transactions on Intelligent Transportation Systems;2023-11

3. Elephants and algorithms: a review of the current and future role of AI in elephant monitoring;Journal of The Royal Society Interface;2023-11

4. PRICAR: Privacy Framework for Vehicular Data Sharing with Third Parties;2023 IEEE Secure Development Conference (SecDev);2023-10-18

5. Time-Series Misalignment Aware DNN Adversarial Attacks for Connected Autonomous Vehicles;2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3