Influence of Q&P-Parameters and Al-Content on the Microstructural Evolution of Lean-Medium-Mn-Steels

Author:

Höger K.1,Kaar-Schickinger S.2,Wallner M.2,Schneider R.1

Affiliation:

1. University of Applied Sciences Upper Austria, School of Engineering , Stelzhamerstraße 23 , Wels , Austria

2. voestalpine Stahl GmbH, Research and Development Department, Business Unit Coil , voestalpine-Straße 3 , Linz , Austria

Abstract

Abstract This report investigates the impact of different heat treatment parameters and varying Al-contents on the microstructure of Quenching & Partitioning (Q&P) steels. Therefore, three lean-medium-Mn-steels with Al-contents between 0.3 and 0.9 wt-% underwent heat treatments according to Quenching & Partitioning regimes. For comparison, the steels were subjected to a transformation induced plasticity (TRIP) aided-bainitic-ferrite (TBF) process. In both cases, the samples were fully austenitized at 900 °C for 120 s, using dilatometry. For the Quenching & Partitioning process, the quenching temperature (TQ) ranged from 210 °C to 330 °C, while the transformation induced plasticity (TRIP) aided-bainitic-ferrite samples were cooled to 360 °C. Afterwards, the specimen were re-heated to the partitioning temperature (TP) of 400 °C and isothermally held for partitioning times (tp) of 40, 120 and 200 s. Subsequently, these steels were analyzed with regard to their phase fractions and hardness. The results indicated that in the Quenching & Partitioning process, the microstructure was primarily influenced by the partitioning temperature (TQ), while partitioning times (tp) played a minor role due to the time-independent martensitic transformation during quenching. In general, rising quenching temperature (TQ) led to an increase in retained austenite (RA) fraction. In the transformation induced plasticity (TRIP) aided-bainitic-ferrite (TBF) process, a substantial influence of partitioning times (tp) was found, which can be explained by the kinetics of the isothermal bainitic transformation. Regardless of the heat treatment concept, an increasing Al-content contributed to elevated retained austenite contents.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3