Mixed-mode I/III fracture toughness of polymer matrix composites toughened with waste particles

Author:

Alsaadi Mohamad,Erkliğ Ahmet,Bulut Mehmet

Abstract

Abstract Fracture toughness of particle-filled polymer composite beams with different particle content for varying of crack inclination angles was investigated in mode I and mode III loading conditions. The beams were tested using three-point bending test with crack inclination angles of 30°, 45°, 75°, and 90°. Sewage sludge ash (SSA), fly ash (FA), and silicon carbide (SiC) microparticles were used as toughening fillers with 5, 10, 15, and 20 wt% contents of the total weight of the polymer composites. The scanning electron microscope (SEM) micrographs showed that a good indication was observed for dispersion of FA, SSA, and SiC particles within the polymer matrix. The critical crack tip stress intensity factors KIc (crack angle 90°) and KIIIc, and the critical strain energy release rates GIc and GIIIc were calculated and their results were compared. The mode I and mode III fracture toughness of the particulate polyester composite were improved by addition of particulate fillers. The maximum values of fracture toughness mode I (KIc and GIc) and mode III (KIIIc and GIIIc) were recorded at particle content of 5 wt% polymer composites.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3