A novel biaxial double-negative metamaterial for electromagnetic rectangular cloaking operation

Author:

Islam Sikder Sunbeam1,Iqbal Faruque Mohammd Rashed1,Islam Mohammad Tariqul2

Affiliation:

1. 1Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

2. 2Faculty of Engineering and Built Environment, Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

Abstract

AbstractThis paper presents the design and analysis of a novel biaxial double-negative (DNG) metamaterial for electromagnetic cloaking operation in the microwave range. The proposed metamaterial exhibits DNG characteristics for the three axes (x, y, and z axes) wave propagation through the material. For the z-axis wave propagation, it shows resonance in the X-band and shows DNG characteristics there. Similarly, for the x-axis wave propagation, the material displays resonances in the multi-band (S-, C-, and X-bands) microwave frequency ranges with DNG characteristics at the S-, C-, and X-bands. The material exhibits DNG properties at the S- and C-bands for y-axis wave propagation as well. In the basic design, a new metamaterial structure was developed that was split into two arms. The commercially available finite-difference time-domain (FDTD)-based computer simulation technology (CST) Microwave Studio software was adopted to obtain the reflection and transmission parameters of the unit cell. The metamaterial was then used in designing a rectangular electromagnetic cloaking device where a metal cylinder was perfectly cloaked in the C-band region of the microwave spectra. The metamaterial shows near-zero refractive-index property as well in the cloaked zone. This is a novel and promising design in the electromagnetic paradigm for its biaxial DNG characteristics and rectangular cloaking operation.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3