Design and performance analysis of small-sized multiband microstrip patch antenna on custom-made biopolymer substrate

Author:

Ahsan Md Rezwanul1,Islam Mohammad Tariqul1,Ullah Mohammad Habib2

Affiliation:

1. 1Faculty of Engineering and Built Environment, Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia

2. 2Faculty of Engineering, Department of Electrical Engineering, University of Malaya (UM), Kuala Lumpur 50603, Malaysia

Abstract

AbstractThis paper presents a simple design analysis and performance evaluation of rectangular, slotted, microstrip feed patch antenna. The design processes are performed by employing the finite element method (FEM)-based commercial EM simulation software High-Frequency Structural Simulator (HFSS). The proposed multiband antenna is composed of a rectangular, slotted radiator formed with four arc slots and central square slot, reduced ground plane, and microstrip line for feeding. The patch antenna is excited through the standard 50 Ω RF transmission line, impedance-compliant SMA connector that is connected to the microstrip line. The optimal parametric dimensions from the numerical simulations are used for constructing the physical prototype on a custom-made, ceramic-filled biopolymer substrate of εr=10.0. Based on simulation results, the experimental data are collected, analyzed, and compared; the surface current distributions on the patch, gain, and radiation patterns are critically discussed. The measured results show the impedance bandwidths for S11 less than -10 dB are 712 MHz at 0.788 GHz band, 1.38 GHz at 3.34 GHz band, and 2.46 GHz at 8.01 GHz band. The good radiation pattern performances, almost stable gain over the bands, and appreciable bandwidths recommend the antenna for operating in RFID, WiMAX, and C/X-band applications.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio-based Materials for Microwave Devices: A Review;Journal of Electronic Materials;2021-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3