Microstructures and surface performance of laser melting deposited composites on a Ti alloy

Author:

Li Peng1

Affiliation:

1. 1Mechanical and Electronic Engineering Department, Shandong Agriculture and Engineering University, Jinan 250100, P.R. China

Abstract

AbstractThis work is based on the dry sliding wear and cyclic oxidation of composites deposited on a TA1 substrate using laser melting deposition (LMD) technique, the parameters of which are such as to provide almost crack-free composites with minimum dilution and very low porosity. To our knowledge, it is the first time that Stellite SF12-Al-FeSi-B4C mixed powders are deposited as hard composites by LMD technique. Scanning electron microscopy results indicate that such composites with metallurgical joint to a TA1 substrate were formed. It is noted that many nanocrystalline/amorphous phases are also produced, which improve the surface performance of such composites. Compared with the TA1 substrate, improvement of cyclic oxidation and wear resistance are obtained for such composites.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3