Effect of geometrical parameters on the effective elastic modulus for an X-type lattice truss panel structure

Author:

Zhang Qian12,Jiang Wenchun3,Zhang Yanting1

Affiliation:

1. College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China

2. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China

3. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China, Phone: +86 532 86980609, Fax: +86 532 86980609

Abstract

AbstractThe lattice truss panel structure (LTPS), which is a high strength material with high efficiency of heat transfer, has a good potential to be used as compact heat exchanger. The core of LTPS is a periodic porous structure, and the effective elastic modulus (EEM) will be different from the base material. It is essential to calculate the EEM for the design of this type of heat exchanger. This paper presents a study on the EEM of X-type LTPS by homogenization method, which has been verified by finite element method (FEM). It reveals that the effects of seven geometrical parameters of the X-type LTPS on EEM are not identical, and the relationship between the seven parameters and EEM has been established. Results calculated by homogenization method and FEM show a good agreement. The EEM decreases with the increase of truss length, stamping angle, shearing angle and node length, while it increases with the increase of truss width, truss thickness and face sheet thickness. Unlike the conventional foam material, there is no clear correlation between the EEM and the relative density, and a formula has been fitted to calculate the EEM of LTPS.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study of equivalent mechanical properties on pyramidal lattice materials;Mechanics of Advanced Materials and Structures;2021-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3