Structural behavior of load-bearing sandwich wall panels with GFRP skin and a foam-web core

Author:

Wang Lu,Wu Zhimin,Liu Weiqing,Wan Li

Abstract

AbstractAn innovative load-bearing sandwich wall panel with glass fiber-reinforced polymer (GFRP) skins and a foam-GFRP web core (GSFW wall panels, where “GS” denotes GFRP skin and “FW” denotes foam-GFRP web core), which was manufactured using a vacuum-assisted resin infusion process, was developed in this paper. An experimental study involving nine specimens was conducted to validate the effectiveness of this panel for increasing the axial strength under edgewise compression loading. The effects of web thickness, web spacing, web height, and skin thickness on axial stiffness, displacement ductility, and energy dissipation were also investigated. The test results demonstrated that axial strength, axial stiffness, displacement ductility, and energy dissipation could be improved by increasing the web thickness, web height, and skin thickness. An analytical model that considers the confinement effect of foam and the local buckling of GFRP skin was proposed to predict the ultimate axial strength of GSFW panels. A comparison of the analytical and experimental results showed that the analytical model accurately predicted the ultimate axial strength of GSFW wall panels under edgewise compression loading. To simulate the low velocity impact by blindings that are rolled by the wind, an impact test was conducted and the residual axial strength of the wall panels after impact was also investigated.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3