Material parameter identification in functionally graded structures using isoparametric graded finite element model

Author:

Huang Lixin12,Yang Ming1,Zhou Xiaojun3,Yao Qi4,Wang Lin5

Affiliation:

1. 1School of Civil Engineering, Guangxi University, Nanning 530004, China

2. 2The Key Laboratory of Disaster Prevention and Structural Safety of the Education Ministry, Guangxi University, Nanning 530004, China

3. 3Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou 510060, China

4. 4Shazhou Professional Institute of Technology, Civil Engineering Department, Zhangjiagang 215600, China

5. 5Times Institute of Architectural Design (Fujian) Co. Ltd., Fuzhou 350003, China

Abstract

AbstractAn identification algorithm based on an isoparametric graded finite element model is developed to identify the material parameters of the plane structure of functionally graded materials (FGMs). The material parameter identification problem is formulated as the problem of minimizing the objective function, which is defined as a square sum of differences between measured displacement and calculated displacement by the isoparametric graded finite element approach. The minimization problem is solved by using the Levenberg-Marquardt method, in which the sensitivity calculation is based on the differentiation of the governing equations of the isoparametric graded finite element model. The validity of this algorithm is illustrated by some numerical experiments. The numerical results reveal that the proposed algorithm not only has high accuracy and stable convergence, but is also robust to the effects of measured displacement noise.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3