Impact of layup rate on the quality of fiber steering/cut-restart in automated fiber placement processes

Author:

Chen Jihua1,Chen-Keat Teresa2,Hojjati Mehdi1,Vallee AJ2,Octeau Marc-Andre1,Yousefpour Ali1

Affiliation:

1. 1Aerospace Manufacturing Technology Centre, National Research Council, Montreal, QC, Canada, H3T 2B2

2. 2GE Global Research, Niskayuna, NY 12309, USA

Abstract

AbstractDeveloping reliable processes is one of the key elements in producing high-quality composite components using an automated fiber placement (AFP) process. In this study, both simulation and experimental studies were carried out to investigate fiber steering and cut/restart under different processing parameters, such as layup rate and compaction pressure, during the AFP process. First, fiber paths were designed using curved fiber axes with different radii. Fiber placement trials were then conducted to investigate the quality of the steered fiber paths. Furthermore, a series of sinusoidal fiber paths were fiber placed and investigated. Moreover, a six-ply laminate with cut-outs in it was manufactured in the cut/restart trials. The accuracy of the fiber cut/restart was compared at different layup rates for both one- and bi-directional layups. Experimental results show that it was possible to layup steered fiber paths with small radii of curvature (minimum 114 mm) designed for this study when the proper process condition was used. It was observed from the cut/restart trials that the quality of tow cut was independent of layup speed; however, the accuracy of tow restart was related to the layup speed. The faster the layup speed, the less accurate was the tow restart.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference16 articles.

1. rd Technical for;Wu;Annual Conference American Society Composites Memphis USA,2008

2. Toulouse;Ward,2011

3. ST thesis Technical University of Delft;IJsselmuiden,2011

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3