A mesh-free simulation of mode I delamination of composite structures

Author:

Hesar Goudarz Ghanizadeh1,Pekbey Yeliz1,Yildiz Hasan1,Maleiki Farshid Khosravi1

Affiliation:

1. 1Ege University Department of Mechanical Engineering, Izmir, Turkey

Abstract

AbstractA numerical and experimental investigation for the analysis of delamination problem under mode I loading in composite material is presented. Firstly, the simulation of the delamination under mode I loading and failure of composite materials based on the cohesive segments model is investigated by using the meshfree method. With the partition of unity of moving least-squares shape functions, the discontinuities at the cohesive segments are approximated with additional degrees of freedom at the nodes. An iterative solution scheme between the continuous and discontinuous fields is presented to solve mode I delamination growth. Secondly, to verify the meshfree method’s results, an experimental investigation and the finite element method were used for the simulation of delamination. The experimental study used a double-cantilever beam made of carbon/epoxy laminate (AS4/3501-6) which consists of 10 plies in [0]10 and [0/90/0/90/0]s layup with delamination inserted in the middle of the laminate. The critical fracture force, which can be experimentally measured, was used to calculate the mode I delamination fracture toughness of the carbon/epoxy laminate. Results obtained from the meshfree method showed very good agreement with experimental data for single-mode delamination under mode I loading. The meshfree method could also be used effectively to produce delamination growth in composite laminates and is especially suitable for the simulation of complex delamination patterns that are difficult to model using traditional numerical methods.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference62 articles.

1. A mesh-independent interface technology for simulation of mixed-mode delamination growth

2. NASA;Camanho,2001

3. MD University New York;Isaac;Engineering Mechanics of Composite Materials,1994

4. An Introduction to Their Programming;Liu;Methods,2005

5. KM;Liew,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3