High-speed electrical sliding wear behaviors of Cu-WS2-graphite-WS2 nanotubes composite

Author:

Qian Gang,Feng Yi,Zhang Jing-Cheng,Wang Yang,Zhang Tian-Ci,Xiao Ke-Song

Abstract

AbstractCu-WS2-graphite-WS2nanotubes composite was fabricated by the powder metallurgy hot-pressed method. The effects of electrical current (5–15 A/cm2) and sliding velocity (5–15 m/s) on the electrical wear behaviors of the composite were investigated using a block-on-slip ring wear tester rubbing against Cu-5 wt% Ag alloy ring under 2.5 N/cm2of applied load. The lubricating effect of WS2nanotubes and composition of tribo-film were analyzed. The results demonstrated that the contact resistance decreases but the wear rate increases as electrical current increases, because the adverse effects of electrical current soften the materials at “a-spots” and damage the tribo-film. Due to the adsorption of gaseous molecule film on the tangential direction of slip ring surface, with the rise of sliding velocity, the contact resistance increases while the wear rate reaches the minimum at a sliding velocity of 10 m/s. The reasonable addition of WS2nanotubes into the Cu-WS2-graphite composite to replace WS2powder can result in a reduction of both contact resistance and wear rate. X-ray photoelectron spectroscopy (XPS) analyses revealed that copper oxides, graphite, WS2and WS2nanotubes in the tribo-film play the main lubrication action at the tribo-interface.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3