Modelling the effect of gaps and overlaps in automated fibre placement (AFP)-manufactured laminates

Author:

Li Xiangqian1,Hallett Stephen R.1,Wisnom Michael R.1

Affiliation:

1. 1Advanced Composites Centre for Innovation and Science, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK

Abstract

AbstractIn automated fibre placement (AFP) process, gaps and overlaps parallel to the fibre direction can be introduced between the adjoining tapes. These gaps and overlaps can cause a reduction in strength compared with pristine conditions. Finite element modelling is an effective way to understand how the size and distribution of such gaps and overlaps influences the strength and failure development. Many modelling work showed that out-of-plane waviness and ply thickness variations caused by gaps and overlaps play an important role in inducing the strength knock-down; however, there has been a lack of effective way to explicitly model the ply waviness, which constrained the relevant research. In this work, 3D meshing tools were developed to automatically generate ply-by-ply models with gaps and overlaps. Intra-ply and inter-ply cohesive elements are also automatically inserted in the model to capture the influence of splitting and delamination. Out-of-plane waviness and ply thickness variations caused by gaps and overlaps are automatically modelled. Models with various sizes and distribution of gaps and overlaps were built to predict the reduction of strength as a function of the magnitude and type of the defects. Results of gap and overlap models will be used to guide future experimental characterization of simulated AFP process defects, manufactured by hand layup from pre-preg tape.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Reference34 articles.

1. Part;Croft;Composites,2011

2. Effects of Manufacturing Defects on the Strength of Toughened Carbon Epoxy State University;Turoski;Composites Thesis Montana,2000

3. A finite element based statistical model for progressive tensile fibre failure in composite laminates

4. Part;Hallett;Composites,2009

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3