Stress analysis of functionally graded discs under mechanical and thermal loads: analytical and numerical solutions

Author:

Bektaş Numan Behlül1,Akça Mehmet1

Affiliation:

1. 1Department of Mechanical Engineering, Pamukkale University, 20070 Denizli, Turkey

Abstract

AbstractThis study deals with stress analysis of functionally graded discs subjected to internal pressure and various temperature distributions, such as uniform T, linearly increasing To, and decreasing Ti temperatures in radial directions. For analytical study, the closed-form solutions for stresses and displacements are obtained by using the infinitesimal deformation theory of elasticity. For graded parameters, power law functions are used in analytical and numerical solutions. For numerical study, discs are modeled and analyzed by using a commercial finite element program, ANSYS®. Metal matrix composite, AlSiC, is selected as disc material. Results obtained both analytical and numerical solutions are found very well consistent with each other. The tangential stresses are found higher than the radial stresses at the inner surface for all thermal loads, and they vary from compressive to tensile and from tensile to compressive depending on the functionally graded material (FGM) properties and temperature loads. The radial stresses are found zero at the inner and outer surface and higher at one third of the disc section near the inner surface. They are also found as compressive and tensile stresses depending on the material properties and temperature loads.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3