Consistency of mixture models with a prior on the number of components

Author:

Miller Jeffrey W.1

Affiliation:

1. Department of Biostatistics, Harvard TH Chan School of Public Health , Boston, MA , United States

Abstract

Abstract This article establishes general conditions for posterior consistency of Bayesian finite mixture models with a prior on the number of components. That is, we provide sufficient conditions under which the posterior concentrates on neighborhoods of the true parameter values when the data are generated from a finite mixture over the assumed family of component distributions. Specifically, we establish almost sure consistency for the number of components, the mixture weights, and the component parameters, up to a permutation of the component labels. The approach taken here is based on Doob’s theorem, which has the advantage of holding under extraordinarily general conditions, and the disadvantage of only guaranteeing consistency at a set of parameter values that has probability one under the prior. However, we show that in fact, for commonly used choices of prior, this yields consistency at Lebesgue-almost all parameter values, which is satisfactory for most practical purposes. We aim to formulate the results in a way that maximizes clarity, generality, and ease of use.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference26 articles.

1. Box, G. E. (1979). Robustness in the strategy of scientific model building. In: Robustness in statistics (pp. 201–236). Cambridge, MA: Elsevier Inc.

2. Cai, D., Campbell, T., & Broderick, T. (2021). Finite mixture models do not reliably learn the number of components. In: International Conference on Machine Learning, PMLR, (pp. 1158–1169).

3. Connor, R. J., & Mosimann, J. E. (1969). Concepts of independence for proportions with a generalization of the Dirichlet distribution. Journal of the American Statistical Association, 64(325), 194–206.

4. Doob, J. L. (1949). Application of the theory of martingales. In: Actes du Colloque International Le Calcul des Probabilités et ses applications (Lyon, 28 Juin – 3 Juillet, 1948) (pp. 23–27). Paris: CNRS.

5. Dudley, R. M. (2002). Real analysis and probability. Cambridge, UK: Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian mixture models (in)consistency for the number of clusters;Scandinavian Journal of Statistics;2024-07-23

2. Bayesian inference with the l1-ball prior: solving combinatorial problems with exact zeros;Journal of the Royal Statistical Society Series B: Statistical Methodology;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3