Fast inference methods for high-dimensional factor copulas

Author:

Verhoijsen Alex12,Krupskiy Pavel1

Affiliation:

1. School of Mathematics and Statistics, The University of Melbourne , Parkville , VIC 3010 , Australia

2. CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, Laboratoire de mathématiques et applications IPRA , UMR 5142, B.P. 1155 , 64013 Pau Cedex , France

Abstract

Abstract Gaussian factor models allow the statistician to capture multivariate dependence between variables. However, they are computationally cumbersome in high dimensions and are not able to capture multivariate skewness in the data. We propose a copula model that allows for arbitrary margins, and multivariate skewness in the data by including a non-Gaussian factor whose dependence structure is the result of a one-factor copula model. Estimation is carried out using a two-step procedure: margins are modelled separately and transformed to the normal scale, after which the dependence structure is estimated. We develop an estimation procedure that allows for fast estimation of the model parameters in a high-dimensional setting. We first prove the theoretical results of the model with up to three Gaussian factors. Then, simulation results confirm that the model works as the sample size and dimensionality grow larger. Finally, we apply the model to a selection of stocks of the S&P500, which demonstrates that our model is able to capture cross-sectional skewness in the stock market data.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3