Affiliation:
1. Aus dem Institut für physikalische Biochemie und Kolloidchemie im Institut für physikalische Chemie der Universität Frankfurt am Main
Abstract
Diluted aqueous solutions of some proteins (bovine serum albumin, β-Lactoglobubin, Peroxidase) show weak phosphorescence lasting over several minutes after they have been irradiated with light in the range 3500-4200 A. Addition of Eosin after the irradiation amplifies in some cases the intensity of luminescence to a value of about hundred. If Eosin is present at the irradiation process the excitation to phosphorescence is possible with light of the wavelength 5460 A.
After denaturation processes which destroy the configuration of proteins (Urea, Guanidine-HCI. detergents, heat at higher pH) the ability of phosphorescence disappears altogether; likewise after blocking the SH-groups by benzochinone or a total oxidation or reduction of the SS-groups which causes an complete unfolding of the peptide chain.
In solutions of bovine serum-albumin irradiated with 3650 Å at room temperature and afterwards frozen to -178°C no radicals could be observed by measurements of electron-spin-resonance but they were detectable if the irradiation took place in the presence of H2O2.
The reactions Xanthinoxidase-Xanthine-O2, Peroxidase-H2O2 and bovine serum-albumin-H2O2-Fe (II) EDTA are accompanied by chemiluminescence. By comparison with the behaviour of oxidised serum-albumin it could be shown that the chemical reaction produces an excited state of the native protein.
The observations lead to the conclusion that the weak phosphorescence of long duration originates from a triplet-state which is sufficiently populated only as the consequence of cooperative phenomena attending the undisturbed α-Helix-structure of the protein.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献