Affiliation:
1. Faculty of Science and Technology, The ICFAI University, Rajawala Road, Central Hope Town, Selaqui, Dehradun-248197, Uttarakhand, India
Abstract
Abstract
PbZr0:5Ti0:5O3 nanopowders (~27 nm) have been prepared by a controlled reconstructive thermal decomposition and crystallization from an amorphous polymeric precursor with polyvinyl alcohol (PVA) and sucrose at 400 to 700 °C in air. The Rietveld refinement of the XRD profiles which were recorded at room temperature for the PbZr0:5Ti0:5O3 powder prepared by a thermal treatment at 700 °C for 2 h, confirmed the P4mm tetragonal crystal structure of the as prepared PbZr0:5Ti0:5O3 nanopowders, with a = 0.4036 nm and c = 0.4147 nm. A hexagonal symmetry (R3c), with a = 0.5774 nm and c = 1.4212 nm, was also detected from Rietveld refinement analysis. Thus, tetragonal and hexagonal phases were found to coexist with the as prepared PbZr0:5Ti0:5O3 nanopowders. The average particle size (D) of the PbZr0:5Ti0:5O3 powders, estimated with the help of the specific surface area, measured by BET method, was 26.1 nm. Average D value, calculated by D2θ1/2 in the XRD peaks with the Debye-Scherrer relation was ~24 nm. TEM study made it possible to measure the particle size of PbZr0:5Ti0:5O3 powders with an average diameter of 27 nm.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献