Author:
Kohli J. K.,Aggarwal Jeetendra
Abstract
AbstractA new class of functions called ‘quasi cl-supercontinuous functions’ is introduced. Basic properties of quasi cl-supercontinuous functions are studied and their place in the hierarchy of variants of continuity that already exist in the mathematical literature is elaborated. The notion of quasi cl-supercontinuity, in general, is independent of continuity but coincides with cl-supercontinuity (≡ clopen continuity) (Applied General Topology 8(2) (2007), 293–300; Indian J. Pure Appl. Math. 14(6) (1983), 767–772), a significantly strong form of continuity, if range is a regular space. The class of quasi cl-supercontinuous functions properly contains each of the classes of (i) quasi perfectly continuous functions and (ii) almost cl-supercontinuous functions; and is strictly contained in the class of quasi
Reference42 articles.
1. Strongly θ - continuous functions;Long;Korean Math Soc,1981
2. continuous functions regular spaces and Hausdorff spaces Calcutta;Kohli;Bull Math Soc,1992
3. supercontinuous functions Indian Pure;Kohli;Appl Math,2001
4. cl - supercontinuous functions Quasi cl - supercontinuous functions Almost perfectly continuous functions Quaestiones;Singh;Gen Topol Math,2007
5. A class of spaces containing all connected and all locally connected spaces;Kohli;Math Nachr,1978