Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time

Author:

Rouhani Behzad Djafari1,Piranfar Mohsen Rahimi2

Affiliation:

1. Department of Mathematical Sciences , University of Texas at El Paso , 500 W. University Ave., El Paso , TX 79968 , USA ; ORCID 0000-0001-8645-8773

2. Department of Mathematical Sciences , University of Texas at El Paso , 500 W. University Ave., El Paso , TX 79968 , USA ; Department of Mathematics, Institute for Advanced Studies in Basic Sciences , P.O. Box 45195-1159, Zanjan , Iran

Abstract

Abstract We consider the following second order evolution equation modelling a nonlinear oscillator with damping ü ( t ) + γ u ˙ ( t ) + A u ( t ) = f ( t ) , ( SEE ) $$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$ where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A −1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A −1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A −1(0). As a discrete version of (SEE), we consider the following second order difference equation u n + 1 - u n - α n ( u n - u n - 1 ) + λ n A u n + 1 f ( t ) , $${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$ where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un , and show that the limit is the asymptotic center of un and belongs to A −1(0). This again shows that A −1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3