Affiliation:
1. Department of Mathematics , University of Leicester , Leicester , LE1 7RH, UK
2. Department of Mathematics , Cankaya University , Ankara , Turkey
Abstract
Abstract
The neutrix composition F(f (x)) of a distribution F(x) and a locally summable function f (x) is said to exist and be equal to the distribution h(x) if the neutrix limit of the sequence {Fn
(f (x))} is equal to h(x), where Fn
(x) = F(x) * δ
n
(x) and {δ
n
(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function (x). The function
cosh
+
-
1
(
x
+
1
)
$\cosh _ + ^{ - 1}\left( {x + 1} \right)$
is defined by
cosh
+
-
1
(
x
+
1
)
=
H
(
x
)
cosh
-
1
(
|
x
|
+
1
)
,
$$\cosh _ + ^{ - 1}\left( {x + 1} \right) = H\left( x \right){\cosh ^{ - 1}}\left( {\left| x \right| + 1} \right),$$
where H(x) denotes Heaviside’s function. It is then proved that the neutrix composition
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right]$
] exists and
δ
(
s
)
[
cosh
+
-
1
(
x
1
/
r
+
1
)
]
=
∑
k
=
0
s
-
1
∑
j
=
0
k
r
+
r
-
1
∑
i
=
0
j
(
-
1
)
k
r
+
r
+
s
-
j
-
1
r
2
j
+
2
(
k
r
+
r
-
1
j
)
(
j
i
)
[
(
j
-
2
i
+
1
)
s
-
(
i
-
2
i
-
1
)
s
]
δ
(
k
)
(
x
)
,
$${\delta ^{(s)}}\left[ {\cosh _ + ^{ - 1}\left( {{x^{1/r}} + 1} \right)} \right] = \sum\limits_{k = 0}^{s - 1} {\sum\limits_{j = 0}^{kr + r - 1} {\sum\limits_{i = 0}^j {{{{{( - 1)}^{kr + r + s - j - 1}}r} \over {{2^{j + 2}}}}\left( {\matrix{{kr + r - 1} \cr j \cr } } \right)} } } \left( {\matrix{j \cr i \cr } } \right)\left[ {{{\left( {j - 2i + 1} \right)}^s} - {{\left( {i - 2i - 1} \right)}^s}} \right]{\delta ^{(k)}}(x),$$
for r, s = 1, 2, . . . . Further results are also proved.
Our results improve, extend and generalize the main theorem of [Fisher B., Al-Sirehy F., Some results on the neutrix composition of distributions involving the delta function and the function cosh−1
+(x + 1), Appl. Math. Sci. (Ruse), 2014, 8(153), 7629–7640].
Reference14 articles.
1. [1] Temple G., The theory of generalized functions, In: Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1955, 228(1173), 175–190
2. [2] Antosik P., Composition of distributions, Technical Report no.9, University of Wisconsin, Milwaukee, 1988-1989, 1–30
3. [3] Van der Corput J. G., Introduction to the neutrix calculus, J. Analyse Math., 1959, 7, 291–398
4. [4] Fisher B., On defining the change of variable in distributions, Rostock. Math. Kolloq., 1985, 28, 75–86
5. [5] Jones, D. S., Hadamard’s Finite Part., Mathematical Methods in the Applied Sciences, 1996, 19(13), 1017–1052