Fuzzy ideals of ordered semigroups with fuzzy orderings

Author:

Huang Xiaokun1,Li Qingguo2

Affiliation:

1. 1College of Mathematics and Econometrics, Hunan University, Changsha 410082, China and College of Mathematics, Honghe University, Mengzi 661199, China

2. 2College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

Abstract

AbstractThe purpose of this paper is to introduce the notions of ∈, ∈ ∨qk-fuzzy ideals of a fuzzy ordered semigroup with the ordering being a fuzzy relation. Several characterizations of ∈, ∈ ∨qk-fuzzy left (resp. right) ideals and ∈, ∈ ∨qk-fuzzy interior ideals are derived. The lattice structures of all ∈, ∈ ∨qk-fuzzy (interior) ideals on such fuzzy ordered semigroup are studied and some methods are given to construct an ∈, ∈ ∨qk-fuzzy (interior) ideals from an arbitrary fuzzy subset. Finally, the characterizations of generalized semisimple fuzzy ordered semigroups in terms of ∈, ∈ ∨qk-fuzzy ideals (resp. ∈, ∈ ∨qk-fuzzy interior ideals) are developed.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference29 articles.

1. Fuzzy interior ideals in ordered semigroups Fuzzy interior ideals in ordered semigroupsLobachevskii;Kehayopulu;Math Math,2006

2. On fuzzy ordered semigroups On fuzzy ordered semigroupsInform;Shabir;Inform Sci Sci,2014

3. A new approach to quantitative domain theory A new approach to quantitative domain theoryElectron;Fan;Electron Notes Theoret Comput Sci Notes Theoret Comput Sci,2001

4. Quantitative domains via fuzzy sets : Part II : Fuzzy Scott topology on fuzzy directed - complete posets Quantitative domains via fuzzy sets : Part II : Fuzzy Scott topology on fuzzy directed - complete posetsFuzzy Set;Yao;Fuzzy Set Syst Syst,2011

5. Regular ordered semigroups in terms of fuzzy subsets Regular ordered semigroups in terms of fuzzy subsetsInform;Kehayopulu;Inform Sci Sci,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized fuzzy ideals in ordered semirings;Complex & Intelligent Systems;2022-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3