Oscillation of impulsive conformable fractional differential equations

Author:

Tariboon Jessada1,Ntouyas Sotiris K.2

Affiliation:

1. 1Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2. 2Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece and Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Arabia

Abstract

AbstractIn this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form$$\left\{ \begin{array}{l} {t_k}{D^\alpha }\left( {p\left( t \right)\left[ {{t_k}{D^\alpha }x\left( t \right) + r\left( t \right)x\left( t \right)} \right]} \right) + q\left( t \right)x\left( t \right) = 0,\quad t \ge {t_0},\;t \ne {t_k},\\ x\left( {t_k^ + } \right) = {a_k}x(t_k^ - ),\quad {t_k}{D^\alpha }x\left( {t_k^ + } \right) = {b_{k\;{t_{k - 1}}}}{D^\alpha }x(t_k^ - ),\quad \;k = 1,2, \ldots. \end{array} \right.$$Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference16 articles.

1. Fractional differential equations with nonlocal integral and integer - fractional - order Neumann type boundary conditions Mediterr Fractional differential equations with nonlocal integral and integer order Neumann type boundary;Ahmad;J Math

2. Abel s formula and Wronskian for conformable fractional differential equations Internat Abu HammadM Abel s formula and Wronskian for conformable fractional differential equationsInternat;Abu Hammad;Appl Appl,2014

3. Explicit methods for fractional differential equations and their stability properties Explicit methods for fractional differential equations and their stability propertiesJ;Galeone;Comput Appl Math Comput Appl Math,2009

4. Fractional Fourier series with applications Abu HammadM Fractional Fourier series with applicationsAmer;Abu Hammad;Comput Appl Math Comput Appl Math,2014

5. On conformable fractional calculus On conformable fractional calculusJ;Abdeljawad;Comput Appl Math Comput Appl Math,2015

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3