Affiliation:
1. Arts and Sciences Faculty, Statistics Department, Kırıkkale University, 71450, Kırıkkale, Turkey
Abstract
Abstract
In the present paper, we introduce a new form of generalized Rayleigh distribution called the Alpha Power generalized Rayleigh (APGR) distribution by following the idea of extension of the distribution families with the Alpha Power transformation. The introduced distribution has the more general form than both the Rayleigh and generalized Rayleigh distributions and provides a better fit than the Rayleigh and generalized Rayleigh distributions for more various forms of the data sets. In the paper, we also obtain explicit forms of some important statistical characteristics of the APGR distribution such as hazard function, survival function, mode, moments, characteristic function, Shannon and Rényi entropies, stress-strength probability, Lorenz and Bonferroni curves and order statistics. The statistical inference problem for the APGR distribution is investigated by using the maximum likelihood and least-square methods. The estimation performances of the obtained estimators are compared based on the bias and mean square error criteria by a conducted Monte-Carlo simulation on small, moderate and large sample sizes. Finally, a real data analysis is given to show how the proposed model works in practice.
Reference58 articles.
1. Iki Parametreli Rayleigh Dagilimlarinin Sonlu Karmalarinda Parametre Tahmini;Uluslararasi Iktisadi ve Idari Incelemeler Dergisi,2018
2. Generalized Rayleigh distribution: different methods of estimations;Computational statistics & data analysis,2005
3. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map;arXiv preprint arXiv:0901.0434,2009
4. Inference for reliability and stress-strength for a scaled Burr type X distribution;Lifetime Data Analysis,2001
5. The Marshall–Olkin extended generalized Rayleigh distribution: Properties and applications;Communications in Statistics-Theory and Methods,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献