Locally adequate semigroup algebras

Author:

Ji Yingdan1,Luo Yanfeng1

Affiliation:

1. 1School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, P.R. of China

Abstract

AbstractWe build up a multiplicative basis for a locally adequate concordant semigroup algebra by constructing Rukolaĭne idempotents. This allows us to decompose the locally adequate concordant semigroup algebra into a direct product of primitive abundant $0{\rm{ - }}{\cal J}*$-simple semigroup algebras. We also deduce a direct sum decomposition of this semigroup algebra in terms of the ${\cal R}*$-classes of the semigroup obtained from the above multiplicative basis. Finally, for some special cases, we provide a description of the projective indecomposable modules and determine the representation type.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference23 articles.

1. Indecomposable representations at characteristic p HigmanDGIndecomposable representations at characteristic pDuke Math;Higman;Duke Math J,1954

2. The nutural partial order on an abundant semigorup Edinburgh LawsonMVThe nutural partial order on an abundant semigorupProc Edinburgh;Lawson;Proc Math Soc Math Soc,1987

3. On semigroup algebras Cambridge MunnWDOn semigroup algebrasProc Cambridge;Munn;Proc Philos Soc Philos Soc,1955

4. On semisimple semigroup rings TeplyMLTurmanEGQuesadaAOn semisimple semigroup ringsProc;Teply;Proc Amer Math Soc Amer Math Soc,1980

5. A representation of a semigroup by a semigroup of matrices over a group with zero PastijnFA representation of a semigroup by a semigroup of matrices over a group with zeroSemigroup;Pastijn;Semigroup Forum Forum,1975

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ehresmann semigroups whose categories are EI and their representation theory;Journal of Algebra;2021-11

2. Abundant semigroup algebras which are Azumaya;Semigroup Forum;2021-07-24

3. Semiprimeness of semigroup algebras;Open Mathematics;2021-01-01

4. The strong nil-cleanness of semigroup rings;Open Mathematics;2020-01-01

5. The $$\pi $$ π -Semisimplicity of Locally Inverse Semigroup Algebras;Bulletin of the Iranian Mathematical Society;2019-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3