A convergence analysis of SOR iterative methods for linear systems with weak H-matrices

Author:

Zhang Cheng-yi,Xue Zichen1,Luo Shuanghua2

Affiliation:

1. 1School of Science, Xi’an Polytechnic University, Xi’an Shaanxi 710048, China

2. 2School of Science, Xi’an Polytechnic University, Xi’an Shaanxi 710048, China

Abstract

AbstractIt is well known that SOR iterative methods are convergent for linear systems, whose coefficient matrices are strictly or irreducibly diagonally dominant matrices and strong H-matrices (whose comparison matrices are nonsingular M-matrices). However, the same can not be true in case of those iterative methods for linear systems with weak H-matrices (whose comparison matrices are singular M-matrices). This paper proposes some necessary and sufficient conditions such that SOR iterative methods are convergent for linear systems with weak H-matrices. Furthermore, some numerical examples are given to demonstrate the convergence results obtained in this paper.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference21 articles.

1. Accelerated overrelaxation method of Accelerated overrelaxation methodMathematics of Computation;Hadjidimos;Mathematics Computation,1978

2. and Diagonal Dominant Matrices and the Determing of H matrices and M matrices Guangxi Diagonal Dominant Matrices and the Determing of H matrices and M matricesGuangxi;Zhang;Sciences Sciences,2005

3. Convergence for the MSOR iterative method applied to matrices Numerical Convergence for the MSOR iterative method applied to matricesApplied Numerical Mathematics;Wang;Applied Mathematics,1996

4. Convergence rates of iterative treatments of partial differential equations Math Tables Convergence rates of iterative treatments of partial differential equationsMath Tables Aids;Frankel;Aids Comput Comput,1950

5. On recurring theorems on diagonal dominance Linear On recurring theorems on diagonal dominanceLinear Algebra;Varga;Algebra Appl Appl,1976

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3