Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute

Author:

Handam Ali H.1,Khashan Hani A.1

Affiliation:

1. Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Al Mafraq, Jordan

Abstract

Abstract An element in a ring R with identity is said to be strongly nil clean if it is the sum of an idempotent and a nilpotent that commute, R is said to be strongly nil clean if every element of R is strongly nil clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. Then R is said to be strongly g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x) that commute. In this paper, we give some relations between strongly nil clean rings and strongly g(x)-nil clean rings. Various basic properties of strongly g(x) -nil cleans are proved and many examples are given.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference28 articles.

1. A note on uniquely (nil) clean ring;Journal of Linear and Topological Algebra,2012

2. Nil-clean matrix rings;Linear Algebra and its Applications,2013

3. Strongly nil clean matrices over R[x]/(x2 – 1);Bull. Korean Math. Soc,2012

4. On rings whose elements are the sum of a unit and a root of a fixed polynomial;Communications in Algebra,2008

5. Endomorphisms that are the sum of a unit and a root of a fixed polynomial;Canad. Math. Bull.,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on ring: g(x)-nil-clean and strongly g(x)-clean, but not strongly g(x)-nil-clean;28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES;2020

2. (WEAKLY) n;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3